Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Fabricating high-density microarrays for retinal recording

Identifieur interne : 00D562 ( Main/Repository ); précédent : 00D561; suivant : 00D563

Fabricating high-density microarrays for retinal recording

Auteurs : RBID : Pascal:03-0343802

Descripteurs français

English descriptors

Abstract

Understanding how the retina encodes the visual scene is a problem, which requires large area, high-density microelectrode arrays to solve. The correlated signals that emerge from the output (ganglion) cells of the retina form a code, which is not well understood. We use a combination of electron beam lithography, photolithography and dry-etch pattern transfer to realise a 519-electrode array in the transparent conductor indium tin oxide (ITO). The electrodes are spaced at 60 μm in a hexagonal close-packed geometry. A mix and match lithography procedure is utilised, whereby the high-density inner region is fabricated using electron beam lithography whilst the outer sections are realised by photolithography. Reactive ion etching (RIE), using CH4/H2, of the ITO forms the array structure and SF6 RIE allows resist removal and patterning of vias through a plasma deposited Si3N4 protective layer. The electrical properties of the ITO layer are unaffected by the etching procedures. A reliable method for achieving low-impedance electroplated platinum electrodes has been employed to yield electrode impedances of ∼20 kΩ. An array fabricated using these dry-etch techniques is shown to record action potentials from live retinal tissue in neurophysiological experiments.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:03-0343802

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Fabricating high-density microarrays for retinal recording</title>
<author>
<name sortKey="Mathieson, K" uniqKey="Mathieson K">K. Mathieson</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics and Astronomy, University of Glasgow</s1>
<s2>Glasgow G12 8QQ, Scotland</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>Glasgow G12 8QQ, Scotland</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cunningham, W" uniqKey="Cunningham W">W. Cunningham</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics and Astronomy, University of Glasgow</s1>
<s2>Glasgow G12 8QQ, Scotland</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>Glasgow G12 8QQ, Scotland</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Marchal, J" uniqKey="Marchal J">J. Marchal</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics and Astronomy, University of Glasgow</s1>
<s2>Glasgow G12 8QQ, Scotland</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>Glasgow G12 8QQ, Scotland</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Melone, J" uniqKey="Melone J">J. Melone</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics and Astronomy, University of Glasgow</s1>
<s2>Glasgow G12 8QQ, Scotland</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>Glasgow G12 8QQ, Scotland</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Horn, M" uniqKey="Horn M">M. Horn</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics and Astronomy, University of Glasgow</s1>
<s2>Glasgow G12 8QQ, Scotland</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>Glasgow G12 8QQ, Scotland</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="O Shea, V" uniqKey="O Shea V">V. O Shea</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics and Astronomy, University of Glasgow</s1>
<s2>Glasgow G12 8QQ, Scotland</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>Glasgow G12 8QQ, Scotland</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Smith, K M" uniqKey="Smith K">K. M. Smith</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics and Astronomy, University of Glasgow</s1>
<s2>Glasgow G12 8QQ, Scotland</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>Glasgow G12 8QQ, Scotland</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Litke, A" uniqKey="Litke A">A. Litke</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>SC1PP University of California Santa Cruz</s1>
<s2>Santa Cruz, CA 95604</s2>
<s3>USA</s3>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Caroline du Sud</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Chichilnisky, E J" uniqKey="Chichilnisky E">E. J. Chichilnisky</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>The Salk Institute for Biological Studies</s1>
<s2>San Diego, CA 92037-1099</s2>
<s3>USA</s3>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>The Salk Institute for Biological Studies</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Rahman, M" uniqKey="Rahman M">M. Rahman</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics and Astronomy, University of Glasgow</s1>
<s2>Glasgow G12 8QQ, Scotland</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>Glasgow G12 8QQ, Scotland</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">03-0343802</idno>
<date when="2003">2003</date>
<idno type="stanalyst">PASCAL 03-0343802 INIST</idno>
<idno type="RBID">Pascal:03-0343802</idno>
<idno type="wicri:Area/Main/Corpus">00CE28</idno>
<idno type="wicri:Area/Main/Repository">00D562</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0167-9317</idno>
<title level="j" type="abbreviated">Microelectron. eng.</title>
<title level="j" type="main">Microelectronic engineering</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Coding</term>
<term>Dry process</term>
<term>Electrical characteristic</term>
<term>Electron beam lithography</term>
<term>High density</term>
<term>ITO layers</term>
<term>Impedance</term>
<term>Microelectrode</term>
<term>Microelectronic fabrication</term>
<term>Patterning</term>
<term>Photolithography</term>
<term>Protective layer</term>
<term>Reactive ion etching</term>
<term>Resist</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Densité élevée</term>
<term>Microélectrode</term>
<term>Codage</term>
<term>Lithographie faisceau électron</term>
<term>Photolithographie</term>
<term>Formation motif</term>
<term>Gravure ionique réactive</term>
<term>Résist</term>
<term>Caractéristique électrique</term>
<term>Couche ITO</term>
<term>Impédance</term>
<term>Procédé voie sèche</term>
<term>Fabrication microélectronique</term>
<term>Couche protectrice</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Codage</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Understanding how the retina encodes the visual scene is a problem, which requires large area, high-density microelectrode arrays to solve. The correlated signals that emerge from the output (ganglion) cells of the retina form a code, which is not well understood. We use a combination of electron beam lithography, photolithography and dry-etch pattern transfer to realise a 519-electrode array in the transparent conductor indium tin oxide (ITO). The electrodes are spaced at 60 μm in a hexagonal close-packed geometry. A mix and match lithography procedure is utilised, whereby the high-density inner region is fabricated using electron beam lithography whilst the outer sections are realised by photolithography. Reactive ion etching (RIE), using CH
<sub>4</sub>
/H
<sub>2</sub>
, of the ITO forms the array structure and SF
<sub>6</sub>
RIE allows resist removal and patterning of vias through a plasma deposited Si
<sub>3</sub>
N
<sub>4</sub>
protective layer. The electrical properties of the ITO layer are unaffected by the etching procedures. A reliable method for achieving low-impedance electroplated platinum electrodes has been employed to yield electrode impedances of ∼20 kΩ. An array fabricated using these dry-etch techniques is shown to record action potentials from live retinal tissue in neurophysiological experiments.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0167-9317</s0>
</fA01>
<fA02 i1="01">
<s0>MIENEF</s0>
</fA02>
<fA03 i2="1">
<s0>Microelectron. eng.</s0>
</fA03>
<fA05>
<s2>67-68</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Fabricating high-density microarrays for retinal recording</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Proceedings of the 28th International Conference on Micro- and Nano-Engineering, September 16-19, 2002, Lugano, Switzerland</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>MATHIESON (K.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>CUNNINGHAM (W.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>MARCHAL (J.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>MELONE (J.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>HORN (M.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>O'SHEA (V.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>SMITH (K. M.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>LITKE (A.)</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>CHICHILNISKY (E. J.)</s1>
</fA11>
<fA11 i1="10" i2="1">
<s1>RAHMAN (M.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>BRUGGER (J.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>GOBRECHT (J.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="03" i2="1">
<s1>ROTHUIZEN (H.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="04" i2="1">
<s1>STAUFER (U.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="05" i2="1">
<s1>VETTIGER (P.)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Department of Physics and Astronomy, University of Glasgow</s1>
<s2>Glasgow G12 8QQ, Scotland</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>10 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>SC1PP University of California Santa Cruz</s1>
<s2>Santa Cruz, CA 95604</s2>
<s3>USA</s3>
<sZ>8 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>The Salk Institute for Biological Studies</s1>
<s2>San Diego, CA 92037-1099</s2>
<s3>USA</s3>
<sZ>9 aut.</sZ>
</fA14>
<fA20>
<s1>520-527</s1>
</fA20>
<fA21>
<s1>2003</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>20003</s2>
<s5>354000111237840700</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2003 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>7 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>03-0343802</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Microelectronic engineering</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Understanding how the retina encodes the visual scene is a problem, which requires large area, high-density microelectrode arrays to solve. The correlated signals that emerge from the output (ganglion) cells of the retina form a code, which is not well understood. We use a combination of electron beam lithography, photolithography and dry-etch pattern transfer to realise a 519-electrode array in the transparent conductor indium tin oxide (ITO). The electrodes are spaced at 60 μm in a hexagonal close-packed geometry. A mix and match lithography procedure is utilised, whereby the high-density inner region is fabricated using electron beam lithography whilst the outer sections are realised by photolithography. Reactive ion etching (RIE), using CH
<sub>4</sub>
/H
<sub>2</sub>
, of the ITO forms the array structure and SF
<sub>6</sub>
RIE allows resist removal and patterning of vias through a plasma deposited Si
<sub>3</sub>
N
<sub>4</sub>
protective layer. The electrical properties of the ITO layer are unaffected by the etching procedures. A reliable method for achieving low-impedance electroplated platinum electrodes has been employed to yield electrode impedances of ∼20 kΩ. An array fabricated using these dry-etch techniques is shown to record action potentials from live retinal tissue in neurophysiological experiments.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D03F17</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Densité élevée</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>High density</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Densidad elevada</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Microélectrode</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Microelectrode</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Microeléctrodo</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Codage</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Coding</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Codificación</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Lithographie faisceau électron</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Electron beam lithography</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Litografía haz electrón</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Photolithographie</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Photolithography</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Fotolitografía</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Formation motif</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Patterning</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Formacíon motivo</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Gravure ionique réactive</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Reactive ion etching</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Grabado iónico reactivo</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Résist</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Resist</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Resistencia</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Caractéristique électrique</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Electrical characteristic</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Característica eléctrica</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Couche ITO</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>ITO layers</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Impédance</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Impedance</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Impedancia</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Procédé voie sèche</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Dry process</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Procedimiento vía seca</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Fabrication microélectronique</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Microelectronic fabrication</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Fabricación microeléctrica</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Couche protectrice</s0>
<s5>22</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Protective layer</s0>
<s5>22</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Capa protectora</s0>
<s5>22</s5>
</fC03>
<fN21>
<s1>246</s1>
</fN21>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>MNE 2002 International Conference on Micro- and Nano-Engineering</s1>
<s2>28</s2>
<s3>Lugano CHE</s3>
<s4>2002-09-16</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 00D562 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 00D562 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:03-0343802
   |texte=   Fabricating high-density microarrays for retinal recording
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024